If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2-20x=0
a = 2.5; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·2.5·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*2.5}=\frac{0}{5} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*2.5}=\frac{40}{5} =8 $
| 7k2-19k-6=0 | | 35-3b=-7(6b-5) | | (x+6)^2=x^2+9x+19 | | -6-5r=-7r | | 12=−r−11 | | y+(-49)=84 | | 2(-4)=5(r+-7) | | 4+11x-2=6x+44-2x | | 1/4=4/5+y | | 27=3+8m | | 16–3p=34 | | y=3+29/2 | | 9(x+1)+3=4x+5(3+x) | | 9y^2-54y-27=0 | | x(25x-10+1)=0 | | 6=7v+6/4+v+6/8 | | 3(x+4)^2=54 | | 16-2x=3/2x+9 | | 8(a-5)=8 | | 6=(7v+6)/(4)+(v+6)/(8) | | a^2+a^2=35^2 | | x-0.3=0.4 | | -2(a-5)+3=a-11 | | n/2+9=15 | | V-5=-10-5v+v | | 15-4x=2x-15 | | (r-4)9=64 | | 1/2(6x+3)-8x-(3x-9)=13/2 | | k2-k-42=0 | | 43-4x=3x-13 | | m-5=56 | | 3x=6/3=0 |